

GUIA DE USUARIO

Universitat Rovira i Virgili, Spain Autonomous University of Madrid, Spain Universidad de Nariño, Colombia Servicio Geológico Colombiano

> Versión 1.0 GNU General Public License 2025

ÍNDICE

GENERALIDADES DEL SISTEMA	4
Objetivo	4
Licencia	4
INSTRUCCIONES PARA LA INSTALACIÓN DE NETDRTOOL	5
1. Cómo obtener NetDRTool	5
2. Instalación de dependencias para JavaDRServer	6
3. Instalación de Microsoft C++ Build Tools	12
 Instalación de dependencias para PythonDRClient 	13
INSTRUCCIONES PARA LA EJECUCIÓN DE NETDRTOOL	17
MANUAL DE USUARIO DE NETDRTOOL	19
1. Ventana principal del sistema	19
1. Barra de navegación	20
2. Opciones del menú	20
3. Zona "Drag and Drop"	20
2. Data	23
2.1. Conexión a los datos	23
2.1.1. Example	24
2.1.2. Plain Text	25
2.1.3. Connection DB	27
2.2. Ejemplo de uso	28
3. Data cleaning	30
3.1. Filtros	31
3.1.1. Standardize	32
3.1.2. Selection	32
3.1.3. Remove Missing	33
3.1.4. Update Missing	33
3.1.5. Range	34
3.1.6. Reduction	35
3.1.7. Replace Value	37
3.1.8. Numeric Range	38
3.1.9. Discretize	39
3.1.10. Codification	41
3.1.11. Proximity	42
3.2. Ejemplo de uso	42
4. Dimensionality reduction	45
4.1. Algoritmos NetDR	46
4.2. Algoritmos Locales	46
4.2.1. LLE	46
4.2.2. LE	47
4.3. Algoritmos Globales	48
4.3.1. PCA	48
4.3.2. MDS	49

4.4. Algoritmos de Kernel	50
4.4.1. KLLE	50
4.4.2. KLE	50
4.4.3. KPCA	51
4.4.4. KMDS	52
4.5. Algoritmos de Combinación	52
4.5.1. MKL	53
4.5.2. DMKL	53
4.6. Algoritmos de Proyección	53
4.6.1. DLPP	53
4.6.2. SPCA	53
4.6.3. GRP	54
4.6.4. SRP	54
4.6.5. FICA	55
4.7. Algoritmos de Aproximación	56
4.7.1. UMAP	56
4.7.2. SliseMap	56
4.7.3. TriMap	57
4.7.4. DensMap	57
4.8. Algoritmos Neuronales	58
4.8.1. PUMAP	58
4.8.2. IsoMap	58
4.8.3. AutoEncoder	59
4.8.4. GraphEncoder	59
4.9. Algoritmos Discriminantes	60
4.9.1. LDA	60
4.9.2. FA	61
5. Views	62
5.1. Tipos de visualizadores	62
5.1.1. Scatter	62
5.1.2. RnxCurves	66
5.1.3. Variance	66
5.1.4. ImageTensor	66
6. Evaluation	66

GENERALIDADES DEL SISTEMA

Objetivo

NetDRTool es una herramienta gráfica para usuarios no expertos en minería de datos, contando con diversas técnicas de reducción de dimensionalidad para bases de datos, permitiendo visualizar los resultados obtenidos a través de su interfaz gráfica y facilitando así la toma de decisiones según estos.

Licencia

El software NetDRTool está bajo la licencia pública general GPL/GNU. Esto significa que se tiene la libertad de compartir o modificar el programa de cualquier forma y de poner el código fuente a disposición de quien lo desee.

INSTRUCCIONES PARA LA INSTALACIÓN DE NETDRTOOL

1. Cómo obtener NetDRTool

Enlace de descarga de la herramienta NetDRTool: <u>http://grias.udenar.edu.co/grias/?p=591</u>

El archivo .zip incluye la carpeta con el código fuente y otra con las dependencias .jar necesarias, dentro de la carpeta del código fuente hay dos carpetas además del archivo README.md, una se ejecuta como proyecto de Java y la otra con Python.

Para poder llevar a cabo la ejecución del programa es necesario instalar:

- 1. Netbeans IDE 8.2: https://filehippo.com/es/download_netbeans/8.2/
- 2. Java JDK 8 (o cualquier versión compatible con el IDE): https://www.oracle.com/co/java/technologies/javase/javase8u211-later-archive -downloads.html
- 3. Visual Studio Code: https://code.visualstudio.com/Download
- 4. Python (Versión 3.11): https://www.python.org/downloads/release/python-3110/
- 5. Microsoft C++ Build Tools https://visualstudio.microsoft.com/visual-cpp-build-tools/
- 6. Dependencias para Java y Python

2. Instalación de dependencias para JavaDRServer

Se abre el proyecto JavaDRServer en Netbeans

NetBeans IDE 8.2				
File	Edit View Navigate	Source	Refactor	Run
<u>የ</u>	New Project New File	Ctrl+Ma Ctrl+N	ayús+N	
2	Open Project	Ctrl+Ma	ayús+O	-
	Open Recent Project			>

La primera vez presentará inconvenientes debido a que las dependencias no se encuentran vinculadas con el proyecto.

🗊 Ор	en Project	×
	Project Problems	
	One or more project resources could not be four Right-click the project in the Projects window and Resolve Project Problems to find the missing	id. d choose resources.
	Do not show this message again	
	Resolve Problems Close	;

Para solucionarlo damos click en "Resolver Problemas..." y se nos presentará una ventana con todas las dependencias faltantes

Resolve Project Problems	×
Project Problems:	
🔺 "jcommon-1.0.15.jar" file/folder could not be found (in NetDRtool) 🔥	Resolve
▲ "prefuse.jar" file/folder could not be found (in NetDRtool)	
▲ "log4j-1.2.17.jar" file/folder could not be found (in NetDRtool)	
▲ "gson-2.10.1.jar" file/folder could not be found (in NetDRtool)	
▲ "javacsv.jar" file/folder could not be found (in NetDRtool)	
▲ "jcommon-1.0.15.jar-1" file/folder could not be found (in NetDRtool) ∨	
ζ >	

Nota: Las dependencias se encuentran en el archivo .zip de NetDrTool descargado previamente.

A continuación se muestra cómo se añadió cada una de ellas:

slf4j-api-1.7.21.jar y slf4j-log4j12-1.7.21.jar

Seleccionamos la opción correspondiente en la ventana de resolver problemas de netbeans y damos click en "resolver".

Aparecerá una ventana que permite buscar y seleccionar el archivo correspondiente

🛓 Browse "s	lf4j-api-1.7.21.jar"				×
Buscar en:	📜 libImportadas		\sim	🏂 📂 🛄 -	
Elementos	 log4j-1.2.17 slf4j-1.7.21 log4j-1.2.17.zip master-applet.ji master-application 	ılp ion.jnlp			
Documentos	 If4j-1.7.21.zip If4j-api-1.7.21.jar If4j-log4j12-1.7.21.jar suingx-1.6.1.jar.zip 				
Este equipo					
I	Nombre de archivo:	slf4j-api-1.7.21.jar			Abrir
Red	Archivos de tipo:	Todos los Archivos		\sim	Cancelar

Una vez se acepta el archivo seleccionado su icono de advertencia cambia a un ícono de aceptación, dando a entender que el archivo se ha añadido exitosamente.

Se repite el mismo proceso con el resto de archivos.

Nota: Es preferible que todos los archivos de dependencias inicialmente se copien en la carpeta:

~\NetDRtool-main\JavaDRserver\libImportadas

Para tener un acceso sencillo a todas ellas a la hora de resolver conflictos.

En cuanto a los problemas encontrados en "core"

Al dar click en resolver nos lleva a la siguiente ventana de administración de librerías, por cada una de ellas se debe revisar las dependencias que faltan, en este caso se ubican los archivos .jar correspondientes y se copian en las carpetas solicitadas.

🗊 Ant Library Manager		\times
Libraries: Class Libraries Hamcrest 1.3	Library Name: JUnit 3.8.2 Classpath Sources Javadoc	
 JUnit 3.52 JUnit 4.12 JUKS Ant Tasks processing processing3 Swing Layout Extensions Tarea CopyLibs 	Library Classpath: junit/junit-3.8.2.jar Add JAR/Folder Add URL	
	Remove Move Up	
	Move Down	
New Library Remove	OK Cancel He	elp

La librería de **junit-3.8.2.jar** se encuentra en la carpeta 'core' dentro del directorio de dependencias.

El archivo .jar se lleva a la siguiente carpeta:

~\NetDRtool-main\JavaDRserver\lib\junit

y el error se corregirá.

ahora para las dependencias org-netbeans-modules-javawebstart-anttasks.jar y org-netbeans-modules-java-j2seproject-copylibstask.jar

Dirigirse a la carpeta ~\NetDRtool-main\JavaDRserver\lib

- Dentro de la carpeta lib se deben crear las siguientes carpetas:
 - 1. La primera con el nombre "**JWSAntTasks**" y dentro de esta se debe copiar el siguiente archivo:

org-netbeans-modules-javawebstart-anttasks.jar

2. Luego debe crearse una carpeta llamada "**CopyLibs**" y en ella copiar el archivo:

org-netbeans-modules-java-j2seproject-copylibstask.jar

Dirigirse a la carpeta ~\NetDRtool-main\JavaDRserver\libImportadas

- Dentro de '**libImportadas**' se deben copiar las siguientes carpetas que se encuentran en 'core':
 - 1. processing
 - 2. libraryProc2
 - 3. libraryProc3

Una vez hayamos añadido todas las dependencias necesarias procedemos a eliminar el archivo "Muestra.htm" que genera conflicto:

Ubicación: ~\NetDRtool-main\JavaDRserver\src\resource\Muestra.htm

Una vez eliminado, el servidor en Java estará listo para ser ejecutado.

3. Instalación de Microsoft C++ Build Tools

Antes de instalar las dependencias de python es necesario instalar Microsoft C++ Build Tools.

Enlace de descarga: https://visualstudio.microsoft.com/visual-cpp-build-tools/

Una vez instalado el asistente se abrirá la siguiente ventana:

Se debe seleccionar la opción de desarrollo para el escritorio con C++ y darle click a instalar.

	[M	ódulos de C++ para las herramie	entas de
] He	erramientas de Clang de C++ pa	ra Wind
		w	indows 11 SDK (10.0.26100.0)	
		w	indows 11 SDK (10.0.22000.0)	
		W	indows 10 SDK (10.0.20348.0)	
		<u></u>	itar componentes que po son es	mostibles
		Qu	inar componentes que no son co	mpaubles
2			Espacio total nece	sario 7,13 GB
			Instalar durante la descarga 🔻	Instalar

Una vez se haya instalado, debe reiniciarse la máquina.

4. Instalación de dependencias para PythonDRClient

Se abre el proyecto PythonDRClient en Visual Studio Code.

Se abre la consola de windows (cmd, powershell o terminal) y se instalan las siguientes dependencias por medio de los comandos:

Dependencia: numpy (Versión menor a 2.2.0)

Dependencia: torch

PS C:\Users\Cerealote>	pip install torch		
Collecting torch			
Downloading torch-2.0	6.0-cp313-cp313-win_a	md64.whl.metadata (28 🛛	kB)
Collecting filelock (f:	rom torch)		
Downloading filelock	-3.18.0-py3-none-any.	whl.metadata (2.9 kB)	
Collecting typing-exten	nsions>=4.10.0 (from	torch)	
Downloading typing_ex	xtensions-4.12.2-py3-	none-any.whl.metadata	(3.0 kB)
Collecting networkx (f:	rom torch)		
Downloading networkx	-3.4.2-py3-none-any.w	hl.metadata (6.3 kB)	

Dependencia: Scikit-learn

sympy==1.13.1
torch==2.6.0
typing_extensions==4.12_2
PS C:\Users\Cerealote> pip install -U scikit-learn
Collecting scikit-learn
Using cached scikit_learn-1.6.1-cp313-cp313-win_amd64.whl.metadat
Requirement already satisfied: numpy>=1.19.5 in c:\users\cerealote\
ages (from scikit-learn) (2.2.4)

Dependencia: tqdm

Installing collected packages: threadpoolctl, scipy, joblib, sciki
Successfully installed ioblib-1 4 2 scikit-learn-1.6.1 scipy-1.15.
PS C:\Users\Cerealote> pip install tqdm
Collecting tqdm
Downloading tqdm-4.67.1-py3-none-any.whl.metadata (57 kB)
Collecting colorama (from tqdm)
Downloading colorama-0.4.6-py2.py3-none-any.whl.metadata (17 kB)
Downloading tqdm-4.67.1-py3-none-any.whl (78 kB)
P_{own}

Dependencia: torchvision

	4.0 pyz.pys none any.wite (23 kb)
Installing collected pa	ickages: colorama, tqdm
Successfully installed	colorama-0 // 6 todm-// 67.1
PS C:\Users\Cerealote>	pip install torchvision
Collecting torchvision	
Downloading torchvisi	.on-0.21.0-cp313-cp313-win_amd64.whl.metadata (
Requirement already sat	isfied: numpy in c:\users\cerealote\appdata\lc:
Requirement already sat	isfied: torch==2.6.0 in c:\users\cerealote\app

Dependencia: seaborn

Downloading pillow-11.1.0-cp313-cp313-win_amd64.whl (2.6 MB)
2.6/2.6 MB 22.9 MB/s eta 0
Installing collected packages: pillow, torchvision
Successfully installed <u>pillow-11 1 0 torchvi</u> sion-0.21.0
PS C:\Users\Cerealote> pip install seaborn
Collecting seaborn
Downloading seaborn-0.13.2-py3-none-any.whl.metadata (5.4 kB)
Requirement already satisfied: numpy!=1.24.0,>=1.20 in c:\users\cereal
Collecting pandas>=1.2 (from seaborn)
Downloading pandas-2.2.3-cp313-cp313-win_amd64.whl.metadata (19 kB)
Collecting matplotlib!=3.6.1,>=3.4 (from seaborn)
Downloading matplotlib-3.10.1-cp313-cp313-win amd64.whl.metadata (11

Dependencia: **score_rnx**

RuntimeErro	r: PyPl r eference	no Longer : /vm l run h	supports	'pip se	arch' (or . ethods for
PS C:\Users	\Cerealot	te> pip in:	stall sco	pre-rnx	
Collecting s	score-rn>	(· · ·			
Downloadi	ng score_	_rnx-0.6-p	y3-none-a	ny.whl.	metadata (
Requirement	already	satisfied	: numpy i	in c:\us	ers\cereal
Requirement	already	satisfied	: matplot	lib in	c:\users\c
Requirement	already	satisfied	: contour	rpy>=1.0	.1 in c:\u

Dependencia: cv2 (opencv)

Installing collected packages: score-rnx	
Successfully installed score rnx 0.6	
PS C:\Users\Cerealote> pip install opencv-python	
Collecting opency-python	
Downloading opencv_python-4.11.0.86-cp37-abi3-win	_a
Requirement already satisfied: numpy>=1.21.2 in c:\	นร
Downloading opencv_python-4.11.0.86-cp37-abi3-win_a	mc
39.5/39	. 5

Dependencia: tensorflow

PS C:\Users\Cerealote> pythonversion
Python 3.11.0 PS C:\Users\Cerealote> pip install tensorflow
Collecting tensorflow
Downloading tensorflow-2.19.0-cp311-cp311-win_amd64.whl (375.9 MB)
375.9/375.9 MB 7.4 MB/s eta 0:00:00
Collecting absl-py>=1.0.0
Downloading absi_py=2.1.0-pys=none=any.wni (133 RB)
Collecting astunparse>=1.6.0
Downloading astunparse-1.6.3-py2.py3-none-any.whl (12 kB)
Collecting flatbuffers>=24.3.25
Downloading flatbuffers-25.2.10-py2.py3-none-any.whl (30 kB)
Collecting gast!=0.5.0,!=0.5.1,!=0.5.2,>=0.2.1

Dependencia: umap

[notice] A new release of pip available: 22.3 -> 25.0.1
[notice] To update, run: python exe -m nip installupgrade pip
PS C:\Users\Cerealote> pip install umap
Collecting umap
Downloading umap-0.1.1.tar.gz (3.2 kB)
Preparing metadata (setup.py) done
Building wheels for collected packages: umap
Building wheel for umap (setup.py) done
Created wheel for umap: filename=umap-0.1.1-py3-none-any.whl siz
f26e7fd1e938b380c5b3f5d0ecedb36369072ee7e04f05ad5be4

Dependencia: trimap

Dependencia: slisemap

Dependencia: Ipproj

Con ello el cliente en python estará listo para ser ejecutado.

INSTRUCCIONES PARA LA EJECUCIÓN DE NETDRTOOL

El primer paso es iniciar el servidor en Java, dando click al icono especificado en la imagen.

NetDRtool - NetBeans IDE 8.2

File Edit View Navigate Source Refactor Run Debug Profile Team Tools Window Help

En la consola de netbeans se menciona que el programa queda escuchando en el puerto 12345.

Y en vscode debe entrar al archivo DRCliente.py

, C			
Б	🕏 DRcliente copy 2.py	9	from
	DRcliente convinv	10	from
π		11	from
\exists	DRcliente.py	12	from
	🕏 GraphEnc.py	13	from
	🍨 metodosDR copy.py	14	
	📌 metodosDR.py	15	def r

Y darle al icono especificado en la imagen para ejecutar el archivo.

Una vez el cliente termine de cargar, se abrirá una ventana de Java y la herramienta estará lista para usarse.

NetDRtool	- 🗆 ×
Data (bashing Dimensionality reduction Views Evaluation	
Eample Plan Text Conection DB	Save Project Open Project
Drag and Drop	
eeDitool is ready	
🖷 🔎 Buscar 🛛 🎪 🎆 🗮 📴 👼 🥥 🥥 🥥 🚄 💽 🇊 🛷 刘 📓	^ 1⊡ @ ⊄× ESP 8-41 a.m. 20/03/2025 3

MANUAL DE USUARIO DE NETDRTOOL

1. Ventana principal del sistema

En la ventana principal del programa se destacan tres secciones, las cuales se explican a continuación:

1. Barra de navegación

NetDRtool
 Data Cleaning Dimensionality reduction Views Evaluation

Contiene cinco apartados:

- Data: Referente a la conexión con los datos a trabajar.
- Data cleaning: Preprocesamiento, limpieza de datos.
- **Dimensionality reduction:** Contiene las técnicas de reducción de dimensión para bases de datos.
- Views: Visualizadores de los métodos de reducción de dimensión.
- **Evaluation:** Herramientas que se encargan de evaluar qué tan eficiente es un algoritmo o modelo utilizado.
- 2. Opciones del menú

Cada apartado de la barra de navegación contiene opciones a escoger, dependiendo de lo que el usuario quiera hacer, estas opciones se explicarán a detalle más adelante

3. Zona "Drag and Drop"

Esta sección del programa cubre la mayor parte de la pantalla y está diseñada para que el usuario pueda ubicar los componentes que quiere utilizar mediante la acción de arrastrar y soltar los mismos para crear el mapa de conocimiento acerca del proceso a evaluar.

Al arrastrar un componente al área de trabajo este contará con ocho ejes o puntos de los cuales se puede conectar otros componentes, además al dar click derecho en cualquier componente dentro del área de trabajo, este desplegará un menú con las opciones de dicho componente:

Dependiendo de la opción que se escoja, se realizará la acción deseada, por ejemplo al seleccionar "Delete", el componente será eliminado, pero al seleccionar "Open" o "Help" emergerá una nueva ventana.

	🛓 NetDRtool: Open	File		-	>
Plain Text	Data File			Browse	Delimiter
	Data Table				0:
	Title 1	Title 2	Title 3	Title 4	○,
					Play
					Exit

Nota: Al seleccionar la opción "Help" de cualquier componente el programa abrirá una ventana con una explicación detallada acerca de cómo utilizar y cómo funciona dicho componente.

. 🗾 .	≜ - □ ×
Plain Text	
0 0 0	5 En la ventana que se desnliega se debe huscar el archivo de datos a cargar
	(sólo se permiten los tipos de archivo .csv: del inglés comma-separated values y .
	arff. attribute-relation file format), una vez encontrado se selecciona y se da clic al botón <i>Abrir</i> . Con esto queda seleccionado el archivo y se vuelve a la ventana
	anterior.
	Data File
	6
	C:IUsersUrwestigaciones\Desktop\imgs manual ktidlejemplo.csv Browse Play
	C:USersitmestigacionesiDesktopilmgs manual kddlejemplo.csv Browse Ptay
	C1USerstimetrigaciones/Deskloptimgs manual kiddlejempto.csv Browse Pitay Outa Table ORUPO NH PACIENTE TOTAL DIENTES DIENT I NANCY MARIBEL BOTRA MENESES 20 12 15EOUNDO LUZAPDO PASCUMAL 30 2
	C:USersUMATEgaciones/Desklopilmgs manual kddlejemplo.csv Browse Play Okta Table ORUPOI NH PACIENTE TOTAL DIENTES/DIENTES/DIENTES/DIENT I SEGUNDO LIZARO 0 PASCUMAL 30 2 I SEGUNDO LIZARO 0 PASCUMAL 30 2 I SEGUNDO LIZARO 0 PASCUMAL 32 3 I MONICA ORTEGA JAPAMILLO 24 8 I DOSE MANIFICIO ORTEGA 28 4 10

2. Data

El apartado dedicado a la conexión con los datos a trabajar contiene dos secciones que se destacan:

- La primera de ellas se encuentra a la izquierda de la pantalla y contiene las opciones de conexión de datos que pueden hacer uso de las herramientas del programa.

Example Plai

Plain Text Connection DB

- a. **Example:** Cuenta con conjuntos de datos previamente cargados.
- b. Plain Text: Permite abrir archivos de texto plano (.csv).
- c. **Connection DB:** Permite conectarse a bases de datos postgresql, mysql u oracle.
- La segunda se encuentra a la derecha y contiene las opciones del proyecto.

- a. Save project: Guardar el proyecto actual.
- b. **Open project:** Abrir un proyecto.
- c. New project: Comenzar un nuevo proyecto.
- 2.1. Conexión a los datos

Se accede a su ventana principal de cada componente dando click derecho en el mismo y luego en la opción "Open".

2.1.1. Example

Su ventana principal es la siguiente:

🛓 Ne	etDRtoo	I: Exampl	e File			-		\times
Matrix	Images	Manifold	Projection	Corrupt	Kernel			
Nam	ie File:							
Dat	a Table —						- 1	
	Title 1		Title 2		Title 3	Title 4		
							ſ	
								Dlav
								Flay
							Г	
								Exit

Cuenta con diversos datos de ejemplo de los cuales se puede escoger para realizar pruebas.

🛓 N	etDRtool	: Example	e File			_
Matrix	Images	Manifold	Projection	Corrupt	Kernel	
Ndii	ie riie					
Dat	ta Table —					
	Title 1		Title 2		Title 3	Title 4

Simplemente debe seleccionar una de las opciones disponibles y cargar los datos mediante el botón "Play".

atrix	Im	ages	Ma	anifold	F	Projection	Corru	ipt	Kernel	
Nom	Fa	shion-	Mni	ist						
Nam	Со	il20								
Dat	Le	go		-						
	Me	odical.	Mni	ist		Title 2			Title	3
_	Cir.									-
	212	JII-Lai	iyua	age						
	Fa	се								
	Mr	list								
NetDR		· Evamr	nle F	ile					_	
, netbr		- Examp								
die terre		Manifali			C					
rix Ima	ges	Manifold	d P	rojection	Со	rrupt Kernel				
rix Ima Name File	ges e: Leç	Manifolo 30	d Pi	rojection	Co	rrupt Kernel				
rix Ima Name File Data Tal	iges e: Leç ble	Manifolo 30	d Pi	rojection	Co	rrupt Kernel				
nix Ima Name File Data Tal -0.99990	iges e: Leç ble 0004	Manifold go -0.99990	d P 0004	-0.999900	Co	-0.99990004	-0.999900	04 -	0.99990004	
rix Ima Name File Data Tal -0.99990	ges e: Leg ble 0004 -1	Manifold go -0.99990	d Pr 0004 -1	-0.999900	Co 004 -1	-0.99990004 -1	-0.999900	04 -	0.99990004 -1 -1	
rix Ima Name File Data Tal -0.99990	ges e: Leg ble 0004 -1 -1 -1	Manifold go -0.99990	0004 -1 -1 -1	-0.999900	Co 004 -1 -1	-0.99990004 -1 -1 -1 -1	-0.999900	04 - -1 -1 -1	0.99990004 -1 -1 -1	
rix Ima Name File Data Tal -0.99990	ges ble 0004 -1 -1 -1 -1	Manifold go -0.99990	0004 -1 -1 -1 -1	-0.999900	Co 004 -1 -1 -1 -1	-0.99990004 -1 -1 -1 -1	-0.999900	04 - -1 -1 -1 -1	0.99990004 -1 -1 -1 -1	
rix Ima Name File Data Tal -0.99990	ages ble 0004 -1 -1 -1 -1 -1 -1 -1 -1	Manifold 30 -0.99990	0004 -1 -1 -1 -1 -1 -1 -1	-0.999900	Co 004 -1 -1 -1 -1 -1 -1 -1	-0.99990004 -1 -1 -1 -1 -1 -1 -1 -1 -1	-0.999900	04 - -1 -1 -1 -1 -1 -1 -1 -1	0.99990004 -1 -1 -1 -1 -1 -1 -1	
rix Ima Name File Data Tal -0.99990	ges ble 0004 -1 -1 -1 -1 -1 -1 -1 -1 -1	Manifold go -0.99990	0004 -1 -1 -1 -1 -1 -1 -1 -1	-0.999900	Co 004 -1 -1 -1 -1 -1 -1 -1 -1 -1	-0.99990004 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	-0.999900	04 - -1 -1 -1 -1 -1 -1 -1 -1	0.99990004 -1 -1 -1 -1 -1 -1 -1 -1 -1	
rix Ima Name File Data Tal -0.99990	ges ble 0004 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	Manifold go -0.99990	0004 -1 -1 -1 -1 -1 -1 -1 -1	-0.999900	Co 004 -1 -1 -1 -1 -1 -1 -1 -1 -1	-0.99990004 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	-0.999900	04 - -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	0.99990004 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	
rix Ima Name File Data Tal -0.99990	ges ble 0004 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	Manifold go -0.99990	d P 0004 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	-0.999900	Co)04 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	-0.99990004 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	-0.999900	04 - -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	0.99990004 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	
rix Ima Name File Data Tal -0.99990	ges ble 00004 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	Manifold go -0.99990	0004 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	-0.999900	Co 004 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	-0.99990004 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	-0.999900	04 - -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	0.99990004 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	
rix Ima Name File Data Tal -0.99990	ges 2: Leg ble 0004 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	Manifold go -0.99990	0004 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	-0.999900	Co 004 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	-0.99990004 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	-0.999900	04 - -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	0.99990004 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	
rix Ima Name File Data Tal -0.99990	ges 2: Leg ble 0004 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	Manifold go -0.99990	0004 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	-0.999900	Co 004 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	-0.99990004 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	-0.999900	04 - -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	0.99990004 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	
rix Ima Name File Data Tal -0.99990	ges a: Leg ble 00004 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	Manifold go -0.99990	0004 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	-0.999900	Co	-0.99990004 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	-0.999900	04 - -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	0.99990004 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	
rix Ima Name File Data Tal -0.99990	ges a: Leg ble 00004 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	Manifold go -0.99990	00004 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	-0.999900		-0.99990004 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	-0.999900	04 - -1 - -1 - -1 - -1 - -1 - -1 - -1 - -1 - -1 - -1 - -1 - -1 - -1 - -1 - -1 - -1 -	0.99990004 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	

🛓 NetDRtool: Example File

2.1.2. Plain Text

Su ventana principal es la siguiente:

🛓 NetDRtool: Open	File		_	
Data File			Browse	Delimiter:
Data Table Title 1	Title 2	Title 3	Title 4	○;
				Play
				Exit

A diferencia de la anterior, mediante la opción "Browse" se puede importar el archivo .csv deseado, especificando si su delimitador es "," o ";".

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 - • ×
😹 Abrir	×
Buscar en: Descargas	Browse O,
🗖 chasis lian li clones y perifericos 🗂 recibos casita	
Coomeva Recibos Steam	Title 4
iars Clientes.csv 3	
NetDRtool-main	
C Nueva carpeta	
Pagos Movistar	
perplexito	Play
Nombre de archivo: clientes.csv	
Archivos de tipo: Data Files (.csv, .arff)	-
4 Abrir Cancelar	
	Exit

Con ello se abre el archivo y se selecciona la opción "Play" para cargarlo.

\$	NetDRto	ol: Open Fi	le				_			\times
[Data File C:\Users\Cer	realote\Dowr	nloads\cliente	es.csv			Brows	e]	Delimiter:
	Data Table									•:
	ID CLI	NOMBRE	CODIGO	EDAD CLI	SEXO CLI	ESTADO .	BARRIO			~,
	1000	Pedro Ortiz	52001	25	 M	c	B100			
	3000	MarÃ-a Va	5001	18	F	S	B110			
	2000	Cesar Mol	11001	22	М	С	B120			
	5000	Jaime Cu	52356	24	М	S	B130		ſ	
	4000	SofÃ-a Gu	52835	19	F	С	B140			
	6000	Andrea C	76001	20	F	S	B150			Diau
	7000	Amanda V	19001	18	F	С	B260			Play
	6500	Cesar Bu	52001	24	M	S	B170	=		
	8000	Armando	5001	25	M	С	B250			
	9000	Carlos Me	11001	22	M	S	B190			
	9500	Lorena C	52356	25	F	С	B200			
	8500	Blanca To	52835	24	F	S	B210			
	1500	Isabel Ca	76001	21	F	S	B220			0
	1800	Amanda	19001	23	F	С	B230			
	2500	Ã⊡ngela	11001	20	F	S	B240			Exit
	3500	Paola RÃ	52356	23	F	S	B100			
	4500	Yurani Bol	52835	19	F	С	B110			
	5500	Jaime Cruz	76001	20	M	С	B120			
	1100	Leidy Ben	52001	24	F	S	B130	-		

2.1.3. Connection DB

Su ventana principal es la siguiente:

\$	_		\times
Connection			
Driver JDBC: JDB	IC		
org.postgresql.Driver	-	\$\lambda	
Port:		Conne	ect
Host:			_
User:		Play	
Password:			
DataBase:		Exit	
Wait Connection			

En ella puede encontrar los siguientes apartados

<u>_</u>	- 0	\times
Connection		
Driver JDBC: JDBC		
1 com.mysql.jdbc.Driver		-
Port:	Connect	1
2 3306		
Host:		
3 localhost		
User:	Play	8
4 root		
Password:		
DataBase:	0	
6 investigacion	Exit	
Wait Connection		

- 1. Tipo de base de datos: puede ser postgresql, mysql u oracle.
- 2. Puerto que utiliza: se carga por defecto y puede editarlo si es necesario.
- 3. Host.
- 4. Usuario.
- 5. Contraseña.
- 6. Nombre de la base de datos.
- 7. Botón de conexión: Debe darle click una vez ingrese la información anterior.
- 8. Botón de carga: Debe darle click una vez se haya establecido la conexión con la base de datos.

2.2. Ejemplo de uso

Una vez se ha arrastrado la opción de conexión de datos al área de trabajo, debe seleccionarse los datos con los cuales se va a trabajar, en este caso se utilizan los datos de ejemplo que ofrece la opción "Example".

°	٤	NetDRtool	: Exampl	e File				-		×
• () •	Mati	rix Images	Manifold	Projection	Corru	ipt Kernel				
		Data Table —								
		Title 1		Title 2		Title 3	Titl	e 4		
									-	
							1			
										Play
										© Exit

Se escoge una de las opciones disponibles

🛓 NetDRtool: Example File

Matrix Ima	iges	Manifold	Project	tion	Corrupt	Kernel
Name Fil	e:	Swissroll				
		Swissroll20k				
Data Ta	ble	Swissroll	Label			
	Title 1	Sphere		e 2		Title 3
		SphereLa	ibel			
		SphereR	βB			
		Toroidal				

Se cargarán los datos en la tabla y entonces se debe dar click al botón "Play"

ix inages manifold	d Projection Corru	pt Kernel		
ame File: Swissrolll a	hel			
Data Table				
X	Y	Z	Label	
-723.431	808,158	-720.185	10 🔺	
63,459	706,402	0.551	6 =	
-114,755	493,419	-430,122	4	
-943,079	895,617	-0,058	9	
-245,075	633,914	77,823	8	
-192,989	184,289	786,129	8	
636,054	353,497	106,531	6	
408,318	221,819	-374,554	6	Pla
-863,605	112,433	287,829	9	
-164,666	663,999	-107,174	11	
-220,409	830,582	782,405	8	
-732,261	584,446	493,718	9	
0,97	79,075	-481,446	5	
-901,362	136,597	-393,917	10	6
0,274	788,974	-476,205	5	
0,692	290,683	773,383	8	E
-415,224	513,126	-974,505	11	
-929,046	105,255	0,871	9	
57,993	244,848	-159,534	6	
-45,989	516,013	706,618	8	
389,136	634,708	61,657	7	
-943,992	542,767	-0,155	9	
-182,032	284,878	159,688	2	
221,156	944,034	722,613	8	
595 202	383 357	350.654	7 💌	

Y posteriormente se deben cargar dichos datos, seleccionando la opción "Load" en el componente de ejemplo.

Con ello los datos estarán listos para ser trabajados.

3. Data cleaning

El apartado Data cleaning contiene diferentes filtros para limpiar los datos a trabajar.

Nota: Para realizar la conexión entre los datos y la herramienta de filtro, los datos con los que va a trabajar deben haber sido cargados con anterioridad, de lo contrario no podrá realizarse dicha conexión.

Esto se logra dando click a uno de los ejes circulares del componente inicial para posteriormente dar click al componente objetivo con el cual busca conectarse.

3.1. Filtros

A continuación se presenta cada filtro con su ventana principal, a la cual puede accederse dando click derecho al componente y luego en la opción "Configure".

3.1.1. Standardize

Permite estandarizar los datos, trabaja solo datos de tipo numérico (integer o double), para evitar valores extremos o atípicos.

3.1.2. Selection

Ayuda a centrarse en los atributos relevantes para incluir en el modelo, escogiendo la etiqueta objetivo.

3.1.3. Remove Missing

Remueve los datos nulos.

A diferencia de los anteriores, no posee una ventana de configuración, simplemente al darle click a "Run" se encargará de eliminar datos nulos.

3.1.4. Update Missing

Actualiza los datos nulos con otros valores.

En este caso puede seleccionarse el atributo del cual quieren buscarse valores nulos y reemplazarlos con el valor que se desee.

- 1. Atributo a seleccionar
- 2. Valor con el cual se va a reemplazar
- 3. Cargar filtro

3.1.5. Range

Permite una selección de rango.

C Exam	nple R	ange o	
٤	_	\Box ×	
Random Rows:	0	Play	
○ 1 in n n Value:		Close	
n First n Value :		ි Res	

- 1. Escoge un determinado número de filas en forma aleatoria
- 2. Escoge desde la fila n
- 3. Las primeras n filas

3.1.6. Reduction

Permite eliminar un conjunto de datos, por rango y por valor.

Por rango:

\$		_		\times
By Range	By Value			
1	First Row		Kee Rer Pla	ep nove
2	Last Row		Clo	se
			Res) set

- 1. Primera fila
- 2. Última fila

Por valor:

٢	_		\times
E	ty Range By Value	_	
1	Attribute : X	® K/ ⊖ R	eep emove
	Smaller than: 0.5 2	P	Play
	Alphabetics	3	ose
		R	5) eset

- 1. Atributo
- 2. Valor numérico menor qué
- 3. Cadenas

Ambos tienen las opciones "Keep" y "Remove", que se utilizan para mantener o quitar los campos dentro del rango o del valor especificado.

3.1.7. Replace Value

Permite reemplazar valores, aplica para aquellos atributos del conjunto de datos que contengan información de tipo cadena o String.

		-		>
Attribute	I	•	Play	
Alphabetics ATTRIBUTE Pedro Ortiz MarĂ-a Vallejo Cesar Molina Jaime Cuesta SofĂ-a Guerrero Andrea Castillo Amanda Vallejo Cesar Buchely Armando Cas	SELECTION		Close	2
Replace by :			5	

Cuenta con los siguientes apartados:

*			_		×
1	Attribute NOMBRE_CLI		-	Play	
2	Alphabetics ATTRIBUTE Pedro Ortiz MarÃ-a Vallejo Cesar Molina Jaime Cuesta SofÃ-a Guerrero Andrea Castillo Amanda Vallejo Cesar Buchely Armando Cas	SELECTION		Clo	se
3	Replace by : Pedro Perez			Ret	5

- 1. Atributo seleccionado.
- 2. Datos seleccionados para ser cambiados.
- 3. Texto con el cual se reemplazarán.

3.1.8. Numeric Range

Permite el filtrado de datos por atributos de tipo numérico (int, double).

Example	Numeric Rang	e
\$		
Attribute Select an attribute	-	Play
Range Min Value 0	Max Value	Close
Cuenta con los siguientes apartados:

	_	
Attribute		1
x		-
		Play
Range		20
Min Value	Max Value	
Min Value	Max Value	Close

- 1. Atributo seleccionado
- 2. Rango de valores

3.1.9. Discretize

Permite realizar la categorización de atributos de carácter numérico tanto valores continuos como valores discretos.

Cuenta con los siguientes apartados:

<u></u>	
Attribute Y	•
Discretize by: Number of Range	Play
 Size of Range 	Close S Reset

- 1. Atributo seleccionado
- 2. Opción de discretización: Por número de rango o tamaño de rango

3.1.10. Codification

Asigna códigos automáticamente según el atributo y el valor.

Al igual que el filtro "Remove Missing" no cuenta con una ventana de configuración por lo cual simplemente se selecciona la opción "Run".

Luego de hacer esto estará disponible la opción "View" para ver los resultados de la codificación.

Al dar click en ella se mostrará una ventana con cuatro apartados: Atributos, Datos de entrada, Datos Filtrados y Diccionario, en este último se podrán observar los resultados de la codificación.

			-	- 🗆
🖉 Attributes 🛛 🚽 Input Data 🏹	Filtered Data 🛛 🔚 Dictionary			-
INDICE	ATRIBUTO	VALOR		Samples
62	NOMBRE CLI	Andrea Castillo		· ·
63	NOMBRE CLI	Armando Casas		Current: 24
64	NOMBRE CLI	Arturo Melo		Dictionary: 87
65	NOMBRECLI	Blanca Torres		
66	NOMBRE_CLI	Carlos MesÃ-as		
67	NOMBRE_CLI	Cesar Buchely		
68	NOMBRE_CLI	Cesar Molina		
69	NOMBRE_CLI	Doris Toro		
70	NOMBRE_CLI	Henry Daza		Filtered
71	NOMBRE_CLI	Isabel Castro		
72	NOMBRE_CLI	Jaime Cruz		
73	NOMBRE_CLI	Jaime Cuesta		
74	NOMBRE_CLI	Leidy Benavides		
75	NOMBRE_CLI	Lorena Castillo		
76	NOMBRE_CLI	MarÃ-a Vallejo		
77	NOMBRE_CLI	Paola RÃ-os		
78	NOMBRE_CLI	Pedro Ortiz		Distingen
79	NOMBRE_CLI	Ruth Arcos		Dictionary
80	NOMBRE_CLI	Sandra CerÃ ³ n		
81	NOMBRE_CLI	SofÃ-a Guerrero		
82	NOMBRE_CLI	Yurani Bolaños	_	
83	NOMBRE CLI	<u>Ã⊓nαe</u> la Alaba		
84	SEXO_CLI	F		
85	SEXO_CLI	M		
86	SEXO_CLI	N	-	

3.1.11. Proximity

Se encarga de crear una matriz de proximidad, realizando el producto entre la matriz presentada y su traspuesta o la traspuesta de dicha matriz por la matriz original, dependiendo de si se escoge entre la opción de trabajar con atributos o con registros.

3.2. Ejemplo de uso

Ahora para utilizar la herramienta de limpieza de datos, en este caso "Selection", una vez realizada la conexión con los datos, debe dar click derecho en la herramienta y seleccionar la opción "Configure".

Drag and Drop

Esto abrirá una ventana en la cuál se muestran las siguientes características del conjunto de datos:

- Atribute: Nombre de la columna en la tabla.
- **Type:** Tipo de dato de dicha columna.
- Selection: Permite elegir si el atributo hace parte del filtro de selección o no.
- **Target:** Permite elegir la variable objetivo del filtro.

Variables	דעתר		TADOLL	1
AIRIBUTE	Daubla	SELECTION	Attribute	Matriz
/	Double		Attribute	0 T
7	Double		Attribute	U Tensor
abel	Integer		Attribute	
				Play

En el ejemplo seleccionado se tienen tres valores de tipo double, las coordenadas X,Y,Z y uno de tipo integer llamado Label o etiqueta, en este caso se elegirá como variable objetivo la etiqueta, caben destacar dos campos interactivos: selection y target.

SELECTION	TARGET
v	Attribute

Si quiere omitir alguno de los atributos en el filtro, debe quitar la selección del mismo dando click en el checkbox correspondiente.

Variables			
ATRIBUTE	TYPE	SELECTION	TARGET
Х	Double	~	Attribute
Y	Double		Attribute
Z	Double	~	Attribute
Label	Integer	~	Attribute

Y para establecer un atributo como objetivo debe dar click en el campo target de la variable objetivo, ello abrirá un submenú con dos opciones: Attribute o Target.

Variables			
ATRIBUTE	TYPE	SELECTION	TARGET
Х	Double	~	Attribute
Y	Double	~	Attribute
Z	Double	~	Attribute
Label	Integer	~	Attrib 💌
			Attribute
			Target

Selecciona "Target" para determinar el objetivo y da click en "Play".

\$]			_	
Variables				
ATRIBUTE	TYPE	SELECTION	TARGET	Matriz
Х	Double	~	Attribute	Smaarz
Υ	Double	~	Attribute	Tensor
Z	Double	r	Attribute	
Label	Integer	₽	Target 💌	
				Play Exe

Luego proceda a dar click derecho en el filtro de selección y elija la opción "Run".

Con ello se ha determinado la variable que será supervisada.

4. Dimensionality reduction

En este apartado se encuentran los algoritmos de reducción de dimensión.

🛓 NetDR	tool										
Data Da	Data Cleaning Dimensionality reduction Views Evaluation										
	NetDR LOCAL GLOBAL KERNEL										
		\otimes	8			8	8			ම	8
NetDRt	NetDRd	Learning	Model	LLE	LE	PCA	MDS	KLLE	KLE	KPCA	KMDS
Drag and D)rop										
	nob.										

Cabe mencionar que estos componentes contienen las opciones:

- 1. Delete: Elimina el componente.
- 2. Configure: Configurar el algoritmo.
- 3. Run: Ejecuta el algoritmo.
- 4. View: Ver los resultados de la reducción.
- 5. Help: Información acerca de los algoritmos de reducción.

Además la conexión de estos componentes en general a excepción de los algoritmos de combinación, debe darse de la siguiente forma:

El filtro recomendado para estas configuraciones es 'Selection' y debe estar configurado y cargado con anterioridad para poder realizar la conexión, los pasos que debe seguir el algoritmo son similares a los mostrados en los filtros, primero se configura, luego se ejecuta el algoritmo y posteriormente estará disponible para visualizar sus datos.

La opción 'View' despliega una ventana con los atributos trabajados y los resultados del respectivo algoritmo aplicado a los datos.

Estos algoritmos se dividen en las siguientes categorías:

4.1. Herramientas NetDR

4.1.1. Learning

Learning es una herramienta que permite el aprendizaje neuronal de los incrustamientos de los algoritmos de reducción para generar modelos de reducción más eficientes.

Su conexión debe realizarse con cualquier componente que sea un algoritmo de reducción de dimensión para que pueda aprender de él, como se mira a continuación:

Nota: El algoritmo debe haber sido configurado y ejecutado con anterioridad.

Su ventana de configuración es la siguiente:

En ella se encuentran los apartados:

- 1. Épocas de aprendizaje.
- 2. Ritmo de aprendizaje.
- 3. Botón de ejecución.
- 4. Botón para guardar el modelo.

Una vez se escoja el número de épocas y el ritmo de aprendizaje, se debe escoger el directorio donde se guardará el modelo a entrenar.

Example Selection		
🛎 – 🗆 🗙	Guardar N	_
Configure		
Ephocs 10 Play	Guardar en: 🗂 Documents 💌 🖬 🛱 🗂 B 🖻	-
	BioshockHD	٦
Learning Rate: 0,001 + 1	CAPCOM My Games	
Model	Recibos Steam	
	Nombre de archivo:	-
	Archivos de tipo: 7 Filtered Data (.model)	-
	2 Guardar Cancelar	
	3 Guardan Cancelan	

Nota: El archivo a guardar debe tener la extensión .model

Luego de haber guardado el modelo debe dar click en 'Play' y después click en 'Run'.

Una vez termine de cargar se habrá guardado el modelo.

La herramienta 'Model' permite cargar modelos previamente creados con la herramienta 'Learning'.

Su conexión con los datos es igual a la de los algoritmos:

Y su ventana de configuración es la siguiente:

	Example	selection	Model		
<u>\$</u>				_	
Configure					
Neural Model					

Selecciona la opción 'Browse' para buscar el modelo a cargar, lo selecciona y lo importa al proyecto.

 \times

Play

O

Browse

Abrir Buscar en:	DRModels	•		× 8=		
C pcatraining.mode	2				-	×
Nombre de archivo:	pcatraining.model				1 Browse	Play
Archivos de <u>t</u> ipo:	Neural Model (.netdr, .model)	3 Abrir	Cancela	▼ r		

Click en 'Play'

\$

Configure		
Neural Model		
C:\Users\Cerealote\Downloads\NetDRModels\pcatraining.model	Browse	Play

Luego click en 'Run'

Con ello el modelo se habrá cargado y ejecutado.

4.1.3. NetDRt

NetDRt es un método topológico que permite combinar varios métodos aprendidos con antelación para generar un modelo de reducción de dimensión más eficiente.

Su ventana de configuración es la siguiente:

4		_		\times
Configure 1		5		
Low Dimension	2	Ĩ		
	2		Pla	у
Ephocs	100	4		
	3		Mo	lab
Learning Rate:	0.001	A.1.	WIO	uei

- 1. Dimensiones a las que se quiere reducir los datos.
- 2. Épocas de aprendizaje.
- 3. Ritmo de aprendizaje.
- 4. Botón para guardar el modelo.
- 5. Botón de ejecución.

Una vez configurados los parámetros, al igual que con la herramienta learning se debe elegir el directorio donde se guardará el modelo, en este caso su extensión es .netdr

🛓 Save						×
Save In:	m 🗖	odelosPrueb	a	•	a 🔒	
bbb.r	netdr					
estel	Disc.ne	tdr				
netDi	iscrimi	nante.netdr				
netto	opo.net	ir				
File <u>N</u> ame	e:	netCombinac	ion			
Files of <u>T</u>	ype:	Filtered Data	(.netdr)			•
					Save	Cancel

Una vez hecho esto se debe dar click en el botón 'Play' y posteriormente en 'Run'

Con ello se cargará y guardará el nuevo modelo.

4.1.4. NetDRd

NetDRd es un método discriminante que permite combinar varios métodos aprendidos con antelación para generar un modelo de reducción de dimensión más eficiente.

Los pasos para su configuración y ejecución son exactamente los mismos que con el componente anterior 'NetDRt'.

4.2. Algoritmos Locales

4.2.1. LLE

El algoritmo LLE presenta la siguiente ventana de configuración:

Donde se deben especificar los valores:

1. Dimensiones a las que se quiere reducir los datos.

2. Tamaño del vecindario

4.2.2. LE

El algoritmo LE presenta la siguiente ventana de configuración:

Donde se deben especificar los valores:

- 1. Dimensiones a las que se quiere reducir los datos.
- 2. Tamaño del vecindario
- 3. Temperatura para conformar el grafo Laplaciano
- 4.3. Algoritmos Globales

4.3.1. PCA

El algoritmo PCA presenta la siguiente ventana de configuración:

Donde se deben especificar los valores:

*	—		×
Configure	mension 2	1	
Scaling	Covariance Covariance Correlation	2	Play

- 1. Dimensiones a las que se quiere reducir los datos.
- 2. Puede ser Covarianza utilizando matriz de disimilitud o Correlación utilizando matriz de afinidad.

4.3.2. MDS

El algoritmo MDS presenta la siguiente ventana de configuración:

Donde se debe especificar el valor:

*			\times
Configure	2	1	
Low Dimension	Z .		Play

1. Dimensiones a las que se quiere reducir los datos.

4.4. Algoritmos de Kernel

4.4.1. KLLE

El algoritmo KLLE presenta la siguiente ventana de configuración:

Example	Selection		KLLE C
\$	_		×
Configure Low Dimer	nsion	2 *	Play

4.4.2. KLE

El algoritmo KLE presenta la siguiente ventana de configuración:

4.4.3. KPCA

El algoritmo KPCA presenta la siguiente ventana de configuración:

Example	Selection	KPCA	• • •
<u>چ</u>			×
Configure			
Low D)imension 2	*	
Gaussian Kerne	el Gamma 🛛 0	<u>·</u>	Play

Donde se deben especificar los valores:

*	-	\times
Configure		
Low Dimension	2	1
Gaussian Kernel Gamma	0 *	2 Play

- 1. Dimensiones a las que se quiere reducir los datos.
- 2. Hiper-parámetro que suministra el grado del polinomio, la escala y el desfase de un kernel Gaussiano.

4.4.4. KMDS

El algoritmo KMDS presenta la siguiente ventana de configuración:

• • • • • • • • • • • • • • • • • • •	Selection	
*	_	
Configure	nsion 2-	≜ ▼ Play

Nota: A excepción del algoritmo KPCA, en los algoritmos de Kernel solamente debe especificarse un valor.

\$ 33			\times
Configure	2	1	Play

- 1. Dimensiones a las que se quiere reducir los datos.
- 4.5. Algoritmos de Combinación

4.5.1. MKL

El algoritmo MKL permite combinar dos o tres métodos kernel, como se muestra en el siguiente ejemplo:

Nota: Los algoritmos que conectan al componente MKL deben haber sido configurados y ejecutados con anterioridad.

La ventana de configuración es la siguiente:

En ella mediante la selección de color en el triángulo cromático, se le puede dar prioridad a uno u otro algoritmo. El resto de la configuración es habitual.

Ahora si decide combinar dos kernels en lugar de tres, como se puede observar en la siguiente imagen:

🛓 Configure DDR \times Selected Color Choice Low Dimension K1:KLE 2 . weighted factors Play 9 К1 K2 Exit 0.698 0.302 K2:KMDS

Entonces su ventana de configuración será la siguiente:

Su funcionamiento es exactamente igual al anterior, solamente que en este caso se cuenta con un rectángulo cromático, para dos kernels.

4.5.2. DMKL

El algoritmo DMKL permite combinar dos o tres métodos kernel, como se muestra en el siguiente ejemplo:

Nota: El algoritmo DMKL de momento no presenta ventana de configuración, se ha sugerido que su configuración es similar a la de MKL.

4.6. Algoritmos de Proyección

4.6.1. DLPP

Nota: El algoritmo DLPP de momento no presenta ventana de configuración, se ha sugerido que su configuración es similar a la de SPCA.

4.6.2. SPCA

El algoritmo SPCA presenta la siguiente ventana de configuración:

Example	Selection	SPCA
*	— [⊐ ×
Configure Low Dimens	sion 2÷	Play

4.6.3. GRP

El algoritmo GRP presenta la siguiente ventana de configuración:

4.6.4. SRP

El algoritmo SRP presenta la siguiente ventana de configuración:

Example Selection SRP	
🥌 – 🗆 🗙	
Configure Low Dimension 2 - Play	

4.6.5. FICA

El algoritmo FICA presenta la siguiente ventana de configuración:

Nota: En los algoritmos de Proyección solamente debe especificarse un valor.

Configure	\$	_		\times
Low Dimension 2 - 1 Play	Configure	2 *	1	Play

1. Dimensiones a las que se quiere reducir los datos.

4.7. Algoritmos de Aproximación

4.7.1. UMAP

El algoritmo UMAP presenta la siguiente ventana de configuración:

4.7.2. SliseMap

El algoritmo SliseMap presenta la siguiente ventana de configuración:

4.7.3. TriMap

El algoritmo TriMap presenta la siguiente ventana de configuración:

4.7.4. DensMap

El algoritmo DensMap presenta la siguiente ventana de configuración:

Nota: En los algoritmos de Aproximación solamente debe especificarse un valor.

\$	_		\times
Configure Low Dimension	2]1	Play

- 1. Dimensiones a las que se quiere reducir los datos.
- 4.8. Algoritmos Neuronales

4.8.1. PUMAP

El algoritmo PUMAP presenta la siguiente ventana de configuración:

4.8.2. IsoMap

El algoritmo IsoMap presenta la siguiente ventana de configuración:

Example	Selection		
-			\times
Configure	sion 2	<u>^</u>	Play

4.8.3. AutoEncoder

El algoritmo AutoEncoder presenta la siguiente ventana de configuración:

4.8.4. GraphEncoder

El algoritmo GraphEncoder presenta la siguiente ventana de configuración:

Nota: En los algoritmos Neuronales solamente debe especificarse un valor.

\$	_		\times
Configure	2 -]1	Play

1. Dimensiones a las que se quiere reducir los datos.

4.9. Algoritmos Discriminantes

4.9.1. LDA

El algoritmo LDA presenta la siguiente ventana de configuración:

Example	Selection	• • •	[₽]
\$			×
Configure	ension 2	* *	Play

4.9.2. FA

El algoritmo FA presenta la siguiente ventana de configuración:

Example	Selection	E	FA C
(1) (1)			×
Configure	sion 2	<u> </u>	Play

Nota: En los algoritmos Discriminantes solamente debe especificarse un valor.

*			\times
Configure	2	1	Play

1. Dimensiones a las que se quiere reducir los datos.

5. Views

Contiene los visualizadores gráficos de los datos.

Nota: Para que los componentes se conecten al visualizador, deben estar previamente configurados y cargados al programa.

5.1. Tipos de visualizadores

5.1.1. Scatter

Visualizador de datos en dos y tres dimensiones, un componente de visualización Scatter puede conectarse con el componente de Data cleaning llamado "Selection", con los algoritmos de "Dimensionality reduction" y con las herramientas de evaluación, tal y como se muestra en las siguientes imágenes.

Conexión con componente Selection:

Conexión con componente de Dimensionality Reduction

El visualizador Scatter presenta la siguiente ventana de configuración:

Donde se deben especificar los campos:

- 1. Tipo de representación de datos: Nominal, Color, Blanco y negro y RGB (Los datos deben ser compatibles).
- 2. Símbolo con el que se representa cada punto en la gráfica.

Una vez configurado el visualizador, debe dar click al botón "Play" de la ventana anterior y posteriormente dar click en la opción "Run" del visualizador.

Una vez configurado y cargado el visualizador, se da click en la opción View.

Así puede observarse la representación gráfica de los datos.

Nota: Si el filtro 'Selection' cuenta con más de tres variables en el resultado de su aplicación, entonces el visualizador Scatter no funcionará debido a que solamente puede representar gráficamente hasta tres dimensiones.

Ejemplo de visualizador en 3D (Datos del componente "Selection"):

Ejemplo de visualizador en 2D (Datos reducidos con el algoritmo KMDS):

🛓 KMDS

0,07 0,06 0,05 0,04

Ejemplo de uso:

En este caso se van a cargar datos del tipo imagen Mnist o números escritos a mano, primero se cargan dichos datos al componente 'Example'.

	🛓 NetDRtool: Example File					
• • • •	Matrix	Images Manifol		Projection		
	Nam	Fashion- Coil20	Mnist			
o C C C	Dat	Lego	_			
		Medical-	Mnist	Title 2		
		Sign-Lar	iguage _			
		Face				
		Mnist				

Se conecta al filtro 'Selection' y se elige la variable objetivo.

Example Selection									
4)			_		×				
Variables				_					
ATRIBUTE	TYPE	SELECTION	TARGET		Motriz				
label	Integer	V	Target 💌	A .	Matriz				
1x1	Integer	¥	Attribute		Tensor				
1x2	Integer	V	Attribute						
1x3	Integer	V	Attribute						
1x4	Integer	¥	Attribute						
1x5	Integer	V	Attribute						
1x6	Integer	V	Attribute						
1x7	Integer	¥	Attribute						
1x8	Integer	V	Attribute						
1x9	Integer	V	Attribute						
1x10	Integer	¥	Attribute						
1x11	Integer	¥	Attribute		Play				
1x12	Integer	V	Attribute						
1x13	Integer	V	Attribute		Execute the Selectio				
1x14	Integer	~	Attribute						
1x15	Integer	V	Attribute						
1x16	Integer	V	Attribute						
1x17	Integer	₽	Attribute						

Una vez cargada la selección de datos se procede a hacer la conexión con el algoritmo reductor de dimensión.

Se conecta y se configura el visualizador.

El visualizador permite hacer zoom dando click derecho en la ventana y escogiendo las opciones Zoom In o Zoom Out.

 \times

Si se acerca la gráfica se puede observar que los números contenidos han sido agrupados en sus respectivos montones según ha considerado el algoritmo.

🛓 UMAP

5.1.2. RnxCurves

El visualizador RnxCurves está diseñado para mostrar gráficamente el resultado de evaluaciones de preservación topológica Rnx, es decir únicamente puede conectarse con dicho componente, además no cuenta con una ventana de configuración.

Para mirar su gráfica simplemente debe dar click en la opción 'View' del componente.

Mostrará una ventana con una gráfica como la siguiente:

También puede recibir información de más de un componente Rnx, y por ello sirve para realizar comparaciones entre resultados de evaluaciones.

Por ejemplo si se tiene la siguiente configuración:

'RnxCurves' mostrará una gráfica comparando los dos resultados:

5.1.3. Variance

Realiza una combinación de variables que sean ortogonales, no hay dependencia en el espacio lineal.

→ Icono de la herramienta

Nota: Se ha sugerido que este componente sea conectado con el algoritmo PCA, de momento no presenta funcionamiento reconocible.

5.1.4. ImageTensor

Permite visualizar tensores de imágenes, no cuenta con una ventana de configuración y para su uso los datos de ejemplo deben ser de tipo imagen:

Una vez se hayan cargado los datos puede proceder a hacer la conexión con el visualizador:

Elige la opción 'Run' y posteriormente 'View'.

Con ello podrán visualizarse los datos de imagen.

6. Evaluation

Además de las herramientas de visualización, también se encuentran presentes las herramientas de evaluación, las cuales permiten analizar el desempeño de los modelos o algoritmos utilizados en un proyecto, para ver cuál de ellos es más eficiente.

Cuenta con dos herramientas para evaluación de algoritmos y modelos:

6.1. Vscore

Métrica que evalúa la calidad de los clusters (grupos de objetos similares) generados por un algoritmo o método de reducción de dimensión.

Su conexión debe realizarse con un algoritmo o modelo de reducción de dimensión, y luego simplemente se debe ejecutar la herramienta.

Una vez el componente termine de cargar, se puede visualizar el resultado de la evaluación:

Además puede visualizarse una gráfica utilizando la herramienta de visualización 'Scatter'.

A continuación se pueden visualizar los resultados:

Se puede observar que en el gráfico de evaluación, Vscore se encarga de hacer las respectivas divisiones por color de los clusters que ha identificado, en zonas que parecen pertenecer a datos similares.

6.2. Rnx

Métrica que evalúa la preservación topológica (estructura) de las relaciones de los datos, luego de aplicar métodos o algoritmos de reducción de dimensión.

Su conexión debe realizarse con un algoritmo o modelo de reducción de dimensión, y luego simplemente se debe ejecutar la herramienta.

Una vez el componente termine de cargar, se puede visualizar el resultado de la evaluación:

Además puede visualizarse una gráfica utilizando la herramienta de visualización 'RnxCurves'.

A continuación puede observarse el resultado que arroja la evaluación con uno de los algoritmos utilizados en este ejemplo.

Para realizar la comparación entre la eficiencia del algoritmo PCA y el método construido con NetDRt, se unen ambos componentes de evaluación Rnx en un mismo componente gráfico RnxCurves

El componente 'RnxCurves' mostrará la siguiente gráfica, donde puede observarse que el modelo aprendido por NetDRt es más eficiente que el algoritmo PCA según la evaluación realizada.

